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Abstraet--A hydrodynamic theory of the process of thinning of one-sided and symmetrical emulsion films is 
presented. The theory is essentially based on three assumptions: 1. the film is considered as being thin in the 
hydrodynamic sense; 2. the film surfaces are assumed to he plane-parallel, and 3. the dissipation of energy 
outside the film and the adjacent regions of the dispersion phase is neglected. The complete set of 
Navier-Stokes equations for the dispersion phase are solved. The case of non-steady flow is also considered. 
Some approximated equations valid for systems of practical importance are obtained. 

1. INTRODUCTION 

Many recent investigations have been dedicated to the study of the kinetics of thinning of 
emulsion films (MacKay & Mason 1963; Hartland 1967; Sonntag 1960; Platikanov & Manev 1964; 
Sheely & Leng 1971). In most, the experimental data have been interpreted by means of Reynolds 
equation, describing the thinning of a liquid film confined between two rigid parallel discs 
(Reynolds 1886). It has been shown however (Radoev, Dimitrov & Ivanov 1974) that in foam 
films, because of the mobility of the surfaces, the rate of thinning can be considerably greater 
than that calculated from Reynolds equation. Deviations from Reynolds equation for emulsion 
films can be even greater in cases where films are obtained in the absence of surfactant. This is 
pointed out in many studies (MacKay & Mason 1963; Hartland 1967; Platikanov & Manev 1964) 
but for lack of alternative governing equations, Reynolds equation is used. 

The above considerations reveal that the correct interpretation of experimental results on the 
kinetic behavior of emulsion films requires the use of an equation for the rate of thinning which 
accounts for both the motion of the film surfaces and the motion of the liquid in the droplets. 
Murdoch & Leng (1971) have attacked this problem but have obtained a solution only for the 
film, while flow in the droplets has been accounted for by introducing some adjustable 
parameters, determined from the experiment. The present work is an attempt to give a complete 
hydrodynamic theory of the process of film thinning by solving Navier-Stokes equations both for 
the film and for the droplets. The rate of thinning is expressed only in terms of known 
experimental quantities. Similar theories are developed for the case of mutual approach of two 
non-deformable droplets (Wacholder & Weihs 1972; Reed & Morrison 1974; Haber, Hetsroni & 
Solan 1973). For cases where a plane-parallel film exists between droplets there is only one set of 
papers in which, as in ours, the motion of the liquid in the droplets is considered (Reed, Riolo & 
Hartland 1974 a,b). Unfortunately, the approach, the model and the approximations used by Reed 
et al. (1974) differ from ours, hindering any quantitative comparison of the two theories, though 
both lead to some identical qualitative results (see below). 

2. FORMULATION OF THE PROBLEM 

For simplicity, we consider the system shown in figure 1: the emulsion film of thickness h and 
radius R is formed in a tube of radius Rc by sucking out the liquid from a biconcave meniscus, II. 
The film and the meniscus form the dispersion medium. The tube, assumed infinitely long, is filled 
with liquid 1 forming the dispersion phase. The system does not contain any surfactant. The film 
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Figure 1. A model of emulsion film of radius R 
formed in a capillary of radius Re.I--dispersion 

phase, II--dispersion medium. 
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Figure 2. Scheme of a plane-parallel circular film of radius 
R and thickness h. 

is plane-parallelt and sufficiently thin so that h/R < 1. Because of the natural symmetry of the 

system we use the cylindrical coordinates shown in figure 2, and all calculations are carried out 

only for z > 0. The flow in the film obeys the simplified Navier-Stokes equations (valid for 

h/R < 1) known from lubrication theory. Denoting all the quantities refering to the film by an 

asterisk we write these equations in the form (Kochin, Kibel & Roze 1965; Levich 1%2) 

2 , a v r _  1 ap* 
az 2 g* Or ' 

ap * = O, 
Oz 

[la] 

[lb] 

1 ~r(rV, )+av* = O. [lc] 
r Oz 

For the dispersion phase we solve the complete set of Navier-Stokes equations 

avr + dv, + av,_  1 ap 1-32v~+ 3 [v , \  a2vr'l 
ot  '-ffr oz o Or +  rkr)+- -rz2J, [2al 

Ov~ aVz 1 {0%~÷13v~+ 3%d h Ovz t_ vr,.~r + V z _ Op + [2b] 
Ot Oz p Oz v~-~r2 r Or Oz 2]' 

l ~r(rVr ) + av~ r ~ = 0, [2c1 

where gravity has been neglected. In [1] and [2] vr and v~ denote the velocity components in r- 

and z-directions, t time, p pressure, p density and Ix and u = ix/p the dynamic and kinematic 

viscosities. To formulate the boundary conditions let us consider briefly the character of the 

liquid motion in the system. Since the outflow of the liquid from the film initiates motion of the 
liquid both in the dispersion phase and in the meniscus, the complete hydrodynamic description 

of the system under consideration is an extremely complicated task. Our intention is more 
modest: we only seek the correlation between the rate of film thinning and the driving force of 

this process. Investigations of the liquid flow in foam systems (films and bubbles) have shown 
that the dissipation of energy decreases sharply with increasing distance between the liquid 
interfaces, so that the energy is primarily dissipated in a narrow region situated immediately 

tin fact the film is usually lens-shaped (the so called "dimple"). The problem of the film shape has been studied in many 
experimental and theoretical works (Hartland 1969; Frankel & Mysels 1962; Ivanov & Radoev 1970-71,1972-73) and we do not 
discuss it here. For microscopic films of lesser diameter, however, the "dimple" is small and the film can be regarded as 
plane-parallel. 
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about the symmetry axis. This result allows us to assume that in the system considered here the 

predominant part of the energy is dissipated in the region 0 = r -5 R, so that there is no need to 
consider liquid motion beyond this region.t This approach, however, restricts the scope of the 
solution for it does not allow the determination of the boundary conditions at r = R with respect 
to v, and vz. Thus, when solving [1] and [2] the following boundary conditions can be employed 

v* = v, = U(r) [3a] 

v * = v = = - V / 2  at z = h / 2 ,  [3b] 

g ,  Or* OVr [3C] 
--~-z=~ 
p * = p ~  at r = R ,  [3d] 

= 0 ] [3e] Vr at z = o~, 
p = pojr [3f] 

OV*=O at z=O, 
Oz [3g] 

where V = - dh/dt is the rate of thinning of the film, U(r) is the radial velocity on the interface, 

po is the pressure in the dispersion phase far from the interface, and p ~ is the pressure in a 
hypothetical equilibrium film of the same thickness. This pressure is related to the pressure p,, in 

the meniscus through the correlation 

p~ =p,,  +II, [4] 

where II is the disjoining pressure (see e.g. Sheludko 1966). All functions giving the solution of [1] 

and [2] must obviously be finite at r = 0. 
The conditions [3a] and [3b] result from the very formulation of the problem, and [3c] is the 

continuity condition for the tangential component of the stress tensor on the interface. Equation 
[3d] follows from the assumption that the liquid in the meniscus is immobile and [3e] and [3f] 
account for the vanishing of the radial motion of the liquid in the dispersion phase at z --> ~ (this 
does not apply to the velocity component v= which, even at z ~ ~, has a finite value (see [13] and 

figure 3). Equation [3g] is the symmetry boundary condition. 
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Figure 3. Plots of the solution of [16]: 1---dependence of the function [ on the dimensionless coordinate ~; 
2---dependence of the function f~ f d~ on 71 ; 3---dependence of the function [ on ~ obtained in (Ivanov & 

Traykov 1971-72) by yon Karm~m-Pohlhausen's method. 

tThis assumption leads to a certain similarity in both the approach as well as in the results of our theory and von 
K~rman's solution for rotation of a disc in an infinite liquid (see e.g. Loytsianskyi 1962; Schlichting 1955). 
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The method of solution of [l] is given in detail by Radoev, Dimitrov & Ivanov (1974) and Ivanov 
& Traykov (1971-72) and we present only the final expressions for v?, VT and p*: 

/5cl 

The particular symmetry of the system implies the following form of the expression for v? 

0, = U(r)f(TI), L61 

where the dimensionless coordinate 

77 = (z - h/W(Ulrv), [71 

may, in principle, depend on r. The thus far unknown function f(n) is determined later. Equations 
[3c], [Sal and [6] yield 

where 

a 1 = (dfldq ), =o. PI 

Since [S] is an algebraic equation with respect to U/r, we can write 

U=Ar, (101 

where A (which does not depend on r and z) is one of the roots of [8]. Thus 161 acquires the form 

vr = Ad(q), [I11 

and 77 does not depend on r: 

rl = (z -h/2)@). [121 

Integrating [2c] on z with the aid of [3b] and [ll] we obtain 

1131 

Taking into account [3f], [ll] and 1131, from [2b] we conclude that p does not also depend on r, 

i.e. the term ap /ar in [2a] vanishes. Equations [ 111, [ 131 and the above considerations allow us to 
write [2] in a simpler form: 
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ave+ ov~ _lop+ o:v~ 
= P'-~Z2,  Ot vz -~  p Oz 

rvr)+ = O. 
r 

[14b] 

[14c] 

These equations are solved in the following sections. 
No truly steady flow in the dispersion phase is possible (see section 6), but for the sake of 

simplicity in the next section we neglect the derivatives with respect to t in [14]. The case of a 
one-sided film (one surface bounding a liquid, the other a solid) is considered in section 4. In 
section 5 a solution for the case of non-steady flow is obtained. Some of the approximations used 

subsequently are analysed in appendix 1. 

3. SYMMETRICAL FILM--STEADY FLOW 

In this case the derivatives with respect to t in [14] disappear. In this manner from [14a] and 
[13], the relation [15] is obtained 

V 2 
f " + 2 f ' ( f  ° f d ~ / + 4 ~ - - ~ - ~ ) - f  =0, [15] 

which after differentiation with respect to ~ is transformed into an ordinary differential equation 

f,,,f, _ f,,2 + f, f2 = O. [16] 

At n = 0, f = 1 (see [3a]) and V/2x/(Av)  ~ 1 (see [A.I.1]). In order for [15] to be valid, the 
condition if(0) = 1 must be satisfied. Since f must go to zero when , / ~  oo, we obtain the following 
boundary conditions for [16] 

'--I} I 7a, f,, _ at , / =  0, 
- [17b1 

f = 0 at ~/= ~. [17c] 

Equations of the type of [16] appear in many hydrodynamics problem (see e.g. Schlichting 
1955). Because of the previously noted similarity between our problem and yon K~rm~n's 
problem for rotation of a disc, it is convenient to solve [16] by the method of Cochran (Schlichting 
1955), used in the solution of von K~rm~n's problem (see also Levich 1962). We represent, 
therefore, the solution of [16] by the series 

n 

fo=S' ann 
~':'-- o n! [18] 

for 0 _-_ 7/~ 1, and 

L = ~ L e-"~ [191 
n = l  

for 7; >> 1. The coefficients an, bn and/3 are determined by substituting [18] and [19] in [16] and 
[17] and equating the values and the derivatives of fo and f® at a point V/o. The numerical solution 
yields the following values: 7/o= 1; /3 = 1.44; ao= 1; a l=  -1.19; a2= 1; a3=0; a4= - 2 ;  

a5 = 2.38; . . .  bl = 1.16; b2 = -0.324; b3 = 0.0905; b4 = 0.0240 etc. The functions f and f'gf d,} 
calculated in this manner are shown in figure 3 (curves 1 and 2). Tl~ey differ by no more than 2% 
from the computer solution of [16] carried out in the ACC of CLTOCT of BAN. In figure 4 the 
calculated streamlines are shown. Both figures reveal that at a given dimensionless distance 
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~, ~ 2.5, the radial motion dies (f(~t) = 0.03). This allows the quantity (see [12] and [23] at E2 ~ 1 ) 

to be considered as a thickness of the boundary layer, where the main part of the energy is 
dissipated. 

! j 
O 

\ 
r 

Figure 4. Streamlines in the dispersion phase at steady flow in a symmetrical emulsion film. 

Equations [18] and [19] give the solution of Navier-Stokes equations [14] for the dispersion 
phase. The velocity vz is easily calculated on this basis from [13]. The pressure p is obtained by 
integrating [14b] with the aid of the boundary condition [3f], 

p =po-2~A[f+(f"f dr/)2]. [21] 

The velocity of thinning, V, can be found from the equation for the balance of forces acting 

upon the film surface, 

f pz.~r dr = *zr dr, [221 P 

where pzz is the normal component of the stress tensor. Writing [8] in the form (see also [10]) 

V 
U = A 2 r ;  A2= [231 

2h(l + E2)' 

where 

E2 6/~ * 

and substituting in [5c] U from [23] we obtain 

p , = p , +  3~*V(RZ-r  2) e2 
h 3 (1 + ez)' 

Thus from [12], [13] and [21], using [17a] we have, at "9 = 0, 

[24] 

[25] 
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,, [OVz\ 
p~ (0) = - p (0) + z/~ ~'~z ) . =o = - p o + 3.04/xA 2, [26a] 

where the value of ~ f  d , / =  0.72 is taken from figure 3. Similarly, from [5b], [23], and [25] we 
obtain 

3/z*V E2 ~R 2 r2)_4/x.A2. [26b] 
P L = - P ~  h ~ (--7~E~)" - 

Equations [26a], [26b], and [4] yield 

where 

3/~* VR 2 E2 
2h 3 (1 + ~2) = AP + (3.04/~ - 4/~*)A2, [27] 

AP = Pc - II [28] 

is the driving force (per unit area) of the process (Pc = p o -  p,, is the capillary pressure). When 
the film is thinning under the action of an external force F, Pc must be replaced by F/~'R 2. If 
AP >> (3.04ix -4/x*)A2 (see [A.I.3]), [27] can be written as 

where 

V 1 
Vo l+E2 ,  [29] 

2h 3 
Vo = ~ AP [30] 

is Reynolds' velocity of thinning of the film formed between two rigid parallel discs (Reynolds 
1886). From [26] it is clear that the same result might be obtained by putting 

and 
p "2 (0) = - p*, [3 la] 

pzz (0) = - p (0) = - po. [3 lb] 

The assumption p (0)= po is equivalent to Prandtl's approximation aplaz = 0 (see section 6). 

4. ONE-SIDED FILM--STEADY FLOW 

An expression for the rate of thinning of one-sided film can be obtained in a manner analogous 
to the above described. In this case the boundary conditions [3] are only valid for the upper 
surface, while for the lower surface they are replaced by 

v* =V]2}  [32a] 
v * =  at z = - h ] 2 .  

[32b] 

Instead of [5], the solution of [1] now yields 

v* =-~3(Uh - Vr)(z2-  h 2/4) + U ( ~ + h )  , 

( 21)] 
3z 1\ Urh/ z +_~+ 4 v *  v 1 , 

. . . .  2 r r(Uh - Vr) -~ )+- -~ -  

~ _ y (  6/~* [.R 
p * = p ~ +  R2-r2 ) - - -~ - - j r  Udr. 

[33a] 

[33b] 

[33c] 



404 f 13 IVANOV and T, T. TRAYKOV 

From [3c], [6], [7], and [33a] we obtain again an algebraic equation for U/r, similar to [8], whose 
solution can be written as 

with 

3V 
U = A , r ;  A, - 4 h ( l ~ e , )  , [34] 

e, 4/x* ' [351 

When the film as a whole does not perform any translational motion, i.e. when the plane z = 0 is 
immobile, the forces acting upon its upper and lower surfaces must be equal. The balance of 

forces [22] can then be applied to the upper surface only. Since the boundary conditions at 

z = h/2 and z = ~c are the same as in the previous section, p= at r / =  0 is given by [26a] with A, 

replacing A2. The value of p*~. at r / =  0 is calculated from [33b], [33c] and [341, 

3/x* V(1 +4e~)(R 2 - r 2 ) _  4 / x , A , .  [36] 
P*:(0) = - P *  4h 3 (1 + e,) 

Thus with [4], [28], and [22] we obtain 

3/x* VR" (1 +4el)  
- -  = 2~P + ( 3 . 0 4 / x  - 4 / x  * ) A  1. [ 3 7 ]  

8]'/3 (1 + e , )  

With 2~P-> (3.04/x- 4/x*)A, (see [A.1.31), and [301, [37] transforms into 

V 4 l+e~ 
= l +4e , "  [38] 

5. NON-STEADY FLOW IN THE D I S P E R S I O N  PHASE 

For a sufficiently thin plane-parallel film and constant external force (capillary pressure) the 

flow will be in fact, quasisteady. All time-dependent quantities depend on t only via h, e.g. 

~)r = v~[r, z, h(t)] and 

(Ovr/Ot) = (OvdOh)(Oh/Ot) = - V(Ovr/Oh). [391 

This assumption is supported by the finding of Reed et al. (1974b) that in most cases their 
long-time assymptotic formula approximates reasonably well the exact solution for any time 

interval. 
When deriving[23] (respectively [34]) we have not employed [14]. Therefore [23] can be used 

now, and from [23], [11], [12] and [39] we obtain 

at V~]~-~  + A2f'  ~ r = - (2f + •f') - - ~ -  Az  f '  • [401 

2 
From [23] we have V(OAz/Oh)= -2A2K2 where 

= (1 0 In V'~ 1 0~2 
K2 - ~ ) (  + e 2 ) + h 0 h .  [411 
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Therefore, 

] -~- -- (2f + ~lf')r2 + f '  A22r. [42] 

The other terms in [14a] are transformed as in the case of a steady flow, so that instead of [15] we 

obtain 

I"+ 2f' f dn - f - (2f + ~I')K2 = 0, [431 

which after differentiation with respect to ~ transforms into 

f,,,f, _ f,2 + f,,f2 + (2 f f " -  3f'2)K2 = 0. [44] 

Substituting ~ = 0 in [43], we see that the boundary condition [17b] is replaced by 

[" = 1 + 2K2 at ~/= O. [45] 

The solution of [44] permits determination of the constant al - - f (0)  which, for a non-steady 
flow, will depend on h through r2. In table 1, values of a, found by numerical solution of [44] for 
various values of the parameter K2 are presented. 

The derivative OVz/Ot in [14b] is calculated from [13] by using the same arguments as when 
deriving [42]. Thus we obtain 

Op "~ r2 (~[ + fo [46] 

In [46] we have neglected the term (V/2)(aVlah)  which is of the order of V/%/(A:v) with respect 
to the other terms. With ~/--> % [46] yields (3p/37/) --> 2/~A2K2 f o f  d~/= const (see figure 3) so that 
the boundary condition [3f] cannot be satisfied. The same difficulty arises in the exact non-steady 
solution of von Km'm~m's problem for rotation of a disc (see e.g. Loytsianskyi 1962). In both 
cases this discrepancy is connected with a certain inconsistency of the model. The liquid having 
reached the film surface (respectively that of the rotating disc), is thrown out toward the 
periphery and its motion is no longer taken into account. Thus, in order to satisfy the continuity 
equation [2c] a flux along the axis z must arise which will compensate for the rejected liquid. 
With steady flow in the boundary layer, this flux is supported by the pressure gradient (see [21] or 
[46] with r2 = 0) Op/0~1 = - 21~A2(f! + 2f f8 f d~/). According to [13], outside the boundary layer 
(at ~/> > ~)  the rate of this flux will be constant (vz = - 2x/(A2v) fro f d~/) and the liquid there 
will move as a solid body without energy dissipation. Hence 0/?/07/ at , / >  ~. For non-steady 

Table 1. Dependence of the coefficients a, and B on K2 (see text) 

K - a l  B r -a~ B 

-0.80 0.342 6.49 0.10 1.263 2.72 
-0.70 0.486 5.07 0.20 1.341 2.62 
-0.60 0.601 4.37 0.30 1.419 2.51 
-0.50 0.703 4.02 0.40 1.481 2.44 
-0.40 0.802 3.69 0.50 1.504 2.38 
-0.30 0.900 3.42 0.60 1.598 2.32 
-0.20 0.991 3.18 0.70 1.660 2.27 
-0.10 1.082 2.98 0.80 1.722 2.22 

0.00 1.189 2.82 0.90 1.771 2.17 
1.00 1.829 2.12 
1.20 1.930 2.07 
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flow, an additional term, 2txA2K~(rlf + fg f d'0), appears in Op/Or/ = 0 (see [46]). It accelerates the 
motion of the liquid along the axis z. Since at ~ > r/, the liquid also alters its velocity with the 
time, in this case c)p/& l does not vanish beyond the boundary layer. In the real bounded system 

(such as the droplet) this effect can hardly play a significant role in the force balance. Moreover. 
even with non-steady flow, the liquid motion at 7 /> ~ does not result in energy dissipation. 
Therefore when integrating [46] we shall assume Op/O~ = 0 at ~ > r/,. Thus from [461] and [3f] we 
obtain 

p(0) = po + 2 t x A 2 [ ( f ~ f  dn) --K n,f/f d T l - 1 ]  [47] 

In the latter equation "O~ and fo f d'o depend, naturally, on h, but for simplicity we shall use the 
values 2.5 and 0.72 which are valid for steady flow. From [22], ]26b], [13], and [47] we obtain 

3Iz*VR 2 E. 2 

2h 3 (1 +e: )  - -  = Ap + (3.04/x - 3.60K2/z - 4/~*)A2. [48] 

From this with/xA2 ~ 1 and /x 'A2  ~ 1 (note that K~ ~ 1) an equation is obtained which coincides 
in form with [28]. However,  when calculating E_~ from [24], the dependence of al on h must be 
taken into account. 

As in the case of a steady flow, the transition from [48] to [29] is equivalent to using the 
approximation [A.I.3]. From a logical viewpoint, rather than integrating [46] approximately, it 

might be better to substitute, following Prandtl, Op/Oz = 0 for [14b] obtaining eventually the same 
result. We chose the former, less founded way, in order to get at least a rough estimate for the 
applicability of [29] at non-steady flow (see section 6). 

The derivation for the one-sided film is carried out in the same way and [38] is again obtained. 
In this case 

~ (  0 In V~ 2 0e~ 
K,= 1 - ~ ) ( 1  + el) +~  h-~-  [491 

must be substituted for K2 in [44] and [45]. 

6. DISCUSSION 

For derivation of the formulae for the rate of thinning, [29] and [38], three main assumptions 

are made: 1. for 0 _-< r -<_ R the approximation h/R >> 1 (thin film) has been used, 2. the film has 
been assumed to be plane-parallel, and 3. the dissipation of the energy resulted by the liquid 
motion at r > R has been disregarded. 

Condition 1 is always well satisfied. In order that condition 2 be fulfilled, special measures 
must be taken, for the deviations from the plane-parallel form are usually substantial with 

emulsion films (see e.g. Hartland 1967, 1969). Condition 3 will be probably violated with films of 
very small radii when the magnitude of the transition region between the film and the meniscus is 

of the order of the film radius, or with very small droplets whose radii are comparable with the 
thickness of the boundary layer. 

More convenient expressions for e2 and V can be derived from [23], [24], 129], and [30]: 

2 , ,/ph4Ap\ 113 " p, '/~ i/3 
= - [ 5 o 1  

and 
v 1 3B{ /z*3R 2 ,~,/3 

v Z ;  = ' 

1511 
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where 
B (K2) = (-4X/2]a,)~, [52] 

and eo = (213B)(ph4APIR2) u3 denote all factors in [50] which do not depend on the viscosities tz 
and /~*. In experimental investigations of the thin liquid films, the values of the parameters 
determining Eo are of the order of magnitude of p = 1 g/cm 3, h = 10 -5 cm, R = 10 -2 cm and 
AP = 10: dyn/cm :. This yields ~o ~ 10 -~ which ensures in practice the validity of the inequality 
~2 ~ 1 for all systems. For a one-sided film, instead of [50] we obtain 

2 E.___L~ =27B z 3 /z 
4+E1 ~ E o  /z*3" [53] 

In this case also ~, ,~ 1 for all systems of practical interest. 
Because of the idealised model and the approximations used it is extremely difficult to 

indicate the exact limits of validity of the results obtained. However, it is quite sure that at/z --) 
the applicability of [29] and [38] is not grounded, for then the approximations [A.I.1] and [A.I.3] 
employed when deriving these equations are not fulfilled. Nevertheless it is worth noting that 
with tz ~oo both E1 and ~z (see [50] and [53]) tend to infinity so that [29] and [38] turn into 
Reynolds equation (V = Vo). With el ~ 1, [38] turns into the equation V = 4Vo for the velocity of 
thinning of a one-sided film verging on the upper surface with vacuum (Sheludko & Platikanov 
1959-60), while with ~2 ~ 1 [29] and [50] yield 

(h sAp2) '13 
v = = , [54] 

which follows also directly from [51]. A remarkable feature of this formula is the absence of the 
viscosity t~* of the dispersion medium. This result is visualised by the calculation of energy 
dissipation. In appendix 2 it is shown that ~2 is approximately equal to the ratio of the energies 
dissipated per unit film area and unit time respectively in the film and the drops. On the other 
hand from [24], [23] (with ~2~ 1) and [57] we have E2~-(tzh/~*)'x/(Vlhv)~(~hl#*6). This 
means that the energy dissipation is merely proportional to the thicknesses h and 8 (i.e. the 
volumes) of the respective regions. Since according to [A.I.2] h/6 ~ 1, with comparable 
viscosities ~ and/x* the predominant part of the energy will be dissipated in the drops. This 
effect will increase when h diminishes because 6 - h-1~3 (see [54] and [57]). 

Neglecting in [41] e2 and h(aEdoh) (see [A.I.4]), 

Kz = 1 - 0 In V/O In h. [55] 

The latter equation allows the calculation of K2 (and hence of B) from the experimentally 
obtained function V(h). The dependence of AP (i.e. of II) on h can then be found from [51] and 
[52]. With the aid of [54], [55] can be written in the form 

2/  OlnAPX OlnB 
[56] 

Comparison of [16] and [44] reveals that the flow will be steady if K2 = 0. Since in the right hand 
side of [51] there are two quantities dependent on h in an entirely different manner, it is hardly 
probable that systems exist which obey the equations for steady flow at all thicknesses. The same 
conclusion was reached by Reed, Riolo & Hartland (1974b). 

We have already mentioned that the solution of [14], represented graphically in figure 3, can 
be interpreted by means of the assumption that a boundary layer with thickness 8 ~ 3.5x/(hv[ V) 
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exists. Similar results are also obtained by the direct application of Prandtl's theory (see e.g. 
Loytsianskyi 1962; Schlichting 1955) according to which 

6 = R / ~ ( R e )  = R/~/(UoR/~,) -~ v ' (hu /V) ,  [571 

where Re is the Reynolds number and Uo = A:R  ~ VR/2h. The good agreement of the results 
obtained by the two approaches is illustrated by curve 3 in figure 3, which represents the function 

f(~) calculated from the solution for steady flow on the basis of Prandtl's approximation (Ivanov 

& Traykov 1971-72). The formula for the velocity of thinning at e2 ¢ 1 derived in (Ivanov & 
Traykov 1971-72) for steady flow coincides with [49] but with B = 2.98 instead of the value 2.82 

obtained in the present work. 
The coincidence of some results obtained in the present paper with those obtained earlier 

(Ivanov & Traykov 1971-72) by von Kgrmhn-Pohlhausen's method does not mean that the 

validity of the present theory is restricted by the applicability of Prandtl's approximation 

6/R ~ 1. Indeed, when using Prandtl's approximation the terms O%r/Or2+ O(Vr/r)/Or in [2a] are 
neglected because they are small compared to 02 vr [ Oz'- when 6 [R ~ 1. In the present theory, they 

are identically zero. This follows from [6] and [10], which are not at all related to Prandtl's 

approximation. The applicability of the above considerations to the case of non-steady flow is 
less certain because of the approximation made in deriving [47]. Nevertheless, we believe that 
despite the divergence of the expression for p at ~ ~ ~, the limits of validity of the theory are the 

same as in the case of steady flow. 

In section 1, the theory of Murdoch & Leng (1971) is referenced. They describe the motion 
of the liquid in the dispersion phase through the adjustable parameter v~, the radial velocity at a 

distance R~ from the film surface. These authors consider it possible to assume vd = 0, which 
means that Rd must coincide with the thickness 6 of the boundary layer. If we put v, = 0 and 

R~ = 6 in their equation [38] (see Murdoch & Leng 1971), using our result [20] we obtain again 
[54], but with B = 5.8 instead of B = 2.82, showing that the two theories are in qualitative 

agreement. 
There are few experimental works where the thinning of emulsion films from pure (without 

surfactant) liquids has been investigated (Mackay & Mason 1963; Hartland 1967; Sheely & Leng 
1971). Sheely and Leng (1971) report the only data for the symmetrical system of two identical 
drops treated in our theory. We use their data for Run No. 11, because only in this case were the film 
radius R and the driving force F (i.e. Ap) constant during the film thinning. Although the 

calculations can be performed with variable B, for simplicity we assume that B does not depend on 

h. From [56] and table 1 we obtain K2 = -2 /3  and B = 4.98. Integration of [54] yields 

/ Ap2 \~/3 
h :y3 -ho2 /3 -~3 .3~R - -~ )  At, [581 

where ho is the initial thickness at which the film forms, her the critical thickness of film rupture 
(Sheludko 1966) and At the time for thinning from ho to h,r. According to Murdoch & Leng 
(1971) ho ~ 10 4 cm. Using the experimental values R ~ 5.5 × 10 -2 cm, F = 5 dyn (Ap = F/Tr 
R : =  530 dyn/cm2), /~ = 8.9× 10 -3 P, p = 0.995 g/cm 3 and At = 0.062 sec, from [58] we obtain 
her -~ 6.3 × 10 -6 cm which is approximately equal to the measured critical thicknesses of foam 
films (see Sheludko 1966) and according Murdoch & Leng (1971), is a reasonable value. 
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APPENDIX A 
We discuss below some approximations used in our theory. The numerical calculations are 

carried out for steady flow (B = 2.82) in a typical system with p = 1 g/cm 3, h = 10-Scm, 
R = 10 -2 cm and AP = 102 dyn/cm 2. For brevity, only the case of symmetrical films is considered. 

1. V[x/(A2v) ~ 1 
From [23], [29] and [30], we have V/%/(A2v)= (1 + ~2)(2hVo/~2) 1/2 which at ~z ~ 1 gives 

x/(a2v)V ~.(2B)l/2(~)l'31_2/35.10_31z_2,3. [A.I.1] 
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With e2>> 1 ( / ~ ) .  V/x/(A2p)>> l, and this approximation is not correct. An alternative 
expression is obtained from [20] and [23]: 

~/(A2v) 6 ' 

which yields hi6 ~ 1. 

2. ~ A d A P  ~ 1 or ~*AdAP ~ 1 

Equations [23], [29], [30] and [50] yield 

~A~_  ~Vo B{  h ~ ~"' ~/~ 
Ap 2he2AP - 2 \ ~ ]  ~2/~ '6"5x  10 2].1, [A.1.3] 

With ~ ~ 3P this ratio will be equal to 0.1, and the approximation will be invalidated. The same 
expression is obtained for ~ * A J A P  but in the final result t~*/~ ~/3 must be substituted for t~ 2/3. 

3. h(SedOh)~ 1 

On the basis of [50] we have 

Oe_~ff ~ e2~ 1 [A.I.4] h 

for all systems of practical interest. 

APPENDIX B 
We prove below that, at least in the case 6/R ~ 1, the parameter e2 is proportional to the ratio 

of the energy dissipated in the film and in the drop. Since (OVr/Or)/(OVr/OZ)~ (Uo/R)/(Uo/6)= 
(~/R) "~ 1, by using [2c], [11] and [13], it is readily shown that the dissipative function w (Kochin, 

Kibel & Roze 1965) for the drop can be written as follows: 

[aVr\ ~ 
w = ~k~-z ] ' [A.2.1] 

In the thin film approximation the same expression will be true for the flow in the film. The total 
dissipation of energy per unit time will be N = 27r .fff-o if-h/2 wr dr dz for the drop and 
N* = 2rr fff=o r,/2 j~ =-h/2 w*r dr dz for the film. So from [A.2.1], [5a], [11], [23] and [24] we obtain 

N* 241~*(u/A2)'/2e22 4a~ 
- -  e 2  ~ ~ 2 '  [A.2.2] 

N h~f=f,~d~ fo=f, dw 


